A function to generate clusters from scRNA-seq data
Source:R/bb_triplecluster.R
bb_triplecluster.Rd
Based on Monocle3's Partitions, Leiden, and Louvain clustering methods. Implemented mostly with default values. Seurat objects will be converted to cell_data_set objects for the clustering. The function produces a list of top markers for each cluster type and returns these assignments to the original object as new cell metadata columnts.
Arguments
- obj
A Seurat or cell_data_set object
- n_top_markers
Number of top markers to identify per cell group, Default: 50
- outfile
Name of a csv file to hold the top marker results. If null, will place "top_markers.csv" in the working directory, Default: NULL
- n_cores
Number of processor cores to use, Default: 8
- cds
Provided for backwards compatibility for existing code. If a value is supplied it will be transferred to obj and a warning message will be emitted, Default: NULL